

<u>Johannes Radl</u>, Andreas Fleischhacker and Georg Lettner (TU Wien) <u>Wouter Schram</u>, Atse Louwen and Wilfried van Sark (Utrecht University)

Workshop "PV prosumers on the rise – how Europe can empower more people to produce, consume & sell their own electricity"

Brussels, 21st November 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764786

Target Countries

Map data ©2019 GeoBasis-DE/BKG (©2009), Google, Inst. Geogr. Nacional, Mapa GISrael, ORION-ME United States

Countries vary in:

- Electricity demand
- PV generation per kW-peak
- Grid tariff design

Calculation of the Input Data

Sector Coupling: Heat Pumps and Electric Vehicles

*Load profile generator source: Pflugradt N., 2019. https://www.loadprofilegenerator.de

Current tariff design in the target countries

Electricity costs = Energy costs + Grid tariffs + taxes and fees

Setup for the renewable energy community

"European Village" represents average housing situation in Europe

energy within the community

Community Scenarios

possible

Community:

possible

Electricity costs with investments

$Total\ Costs(Year) = \alpha * Investment + Grid + Fixed - Revenues$

Change in Total Costs (compared to Grid Consumption)

Installed PV capacity in kWp

Installed battery capacity in kWh

- The value of PV and renewable energy communities depends not only on PV generation but as well on grid tariff design / electricity prices
- Renewable energy communities make PV more profitable, reducing the need of subsidies, due to:
 - Lower investment costs due to community investments
 - More beneficial due to increased self-consumption
- Energy communities give everyone access to PV in case of building restrictions or rooftop limitations

Part II: Greenhouse Gas Emissions of Renewable Energy Communities

Greenhouse Gas Emissions are released (indirectly) due to:

- 1. Manufacturing of PV systems, Batteries, Electric vehicles, Heat pumps
 - Life-cycle assessment (LCA). All data taken from ecoinvent v3 database (for consistency)
- 2. Electricity **use** from the grid and electricity **feed-in** PV electricity to grid ("negative" emissions!)
 - Electricity-related emissions are calculated with timeseries of Hourly Emissions Factors and Electricity Consumption*

Since the emission factor of grid electricity fluctuates every hour, timing of electricity use (or grid feed-in) is important

*We use the configuration, scenarios and electricity use time series of the "European Village"

Hourly Emission Factor (HEF, in [kg CO₂ / MWh])

If you feed-in PV electricity in hour x, you mitigate emissions in that hour
Shows where in Europe energy transition technologies can have highest CO₂ mitigation potential

Schram, W., Louwen, A., Lampropoulos, I., & Sark, W. van. (2019). Comparison of greenhouse gas emission reduction potentials of energy communities in Europe. *Energies* (forthcoming)

GHG reduction potential of all-electric energy communities

Change in annual GHG emissions (Per kWp of installed PV capacity)

Factors affecting GHG reduction potential of PV

GHG reduction potential of PV is determined by:

Solar irradiation

But also:

- Emission factor of a country's generation mix
- Timing of PV generation

Change in annual GHG emissions ICEV vs BEV (Per vehicle)

Key take-aways

- Installation of PV reduces total emissions.
 - Moderated by attractiveness to invest in PV
 - Moderated by country-specific solar irradiation and hourly emission factors
 - Installing PV increases impact switching to heat pumps and electric vehicles
- Emission factors generation mixes determine GHG reduction impact of different transition technologies:
 - Currently high emission factors: stimulate installing PV
 - Currently low emission factors: stimulate deployment HPs and EVs
- Note: Hourly Emission Factors of 2017 are used future generation mix will be different

Wouter Schram, Wilfried van Sark, Atse Louwen

Copernicus Institute of Sustainable Development, Utrecht University

w.g.j.h.m.vansark@uu.nl, w.l.schram@uu.nl, atse.louwen@eurac.edu

Johannes Radl, Andreas Fleischhacker, Georg Lettner

TU Wien, Institute of Energy Systems and Electrical Drives, Energy Economics Group (EEG) <u>radl@eeg.tuwien.ac.at</u>, <u>andreas.fleischhacker@wienenergie.at</u>, <u>lettner@eeg.tuwien.ac.at</u>

Twitter: <u>twitter.com/PVP4Grid</u> Website: <u>www.pvp4grid.eu</u> PVP4Grid Calculator: <u>www.pvp4grid.eu/cmt</u> Contact: <u>info@pvp4grid.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 764786.